TWO MAXIMAL SUBGROUPS OF $E_8(2)$

BY

CHRIS PARKER

School of Mathematics, University of Birmingham Edgbaston, Birmingham B15 2TT, UK e-mail: C.W.Parker@bham.ac.uk

AND

JAN SAXL

Department of Pure Mathematics and Mathematical Statistics
Centre for Mathematical Sciences, University of Cambridge
Wilberforce Road, Cambridge CB3 0WB, UK
e-mail: J.Saxl@dpmms.cam.ac.uk

ABSTRACT

We show that $E_8(2)$ has a unique conjugacy class of subgroups isomorphic to $PSp_4(5)$ and a unique conjugacy class of subgroups isomorphic to $PSL_3(5)$. There normalizers are maximal subgroups of $E_8(2)$ and are, respectively, isomorphic to $PGSp_4(5)$ and $Aut(PSL_3(5))$.

This paper grew out of our paper [13], which was concerned with localizations of finite simple groups. It turned out that $PSp_4(5)$ has a localization in $E_8(2)$. This is one context of our main result.

THEOREM 1:

- (i) There is a unique conjugacy class of subgroups $PSp_4(5)$ in $E_8(2)$. The normalizer of such a subgroup is isomorphic to $PGSp_4(5)$ and is a maximal subgroup in $E_8(2)$.
- (ii) There is a unique conjugacy class of subgroups PSL₃(5) in E₈(2). The normalizer of such a subgroup is isomorphic to Aut(PSL₃(5)) and is a maximal subgroup in E₈(2).

This theorem can be viewed as a minor step in the investigation of conjugacy classes of cross-characteristic embeddings of groups of Lie type into finite exceptional simple groups of Lie type. An important starting point for that is the

paper of Liebeck and Seitz [12], which gives a list of embeddings. A detailed description of their conjugacy classes, as well as minimal fields over which they are defined, remains to be determined in many cases there. For example, it is mentioned in [12] that both $PSp_4(5)$ and $PSL_3(5)$ are subgroups of $E_8(2^a)$ for suitable a and in particular for a even—however, the fact that the minimal a is one as well as uniqueness of the embeddings into $E_8(2)$ up to conjugacy is new.

A starting point for our proof is a result in [3, Theorem 5.1] establishing the existence of subgroups $PSL_4(5)$ in $E_8(4)$. We require the following extension of this result.

THEOREM 2: There is a unique conjugacy class of subgroups $PSL_4(5)$ in $E_8(4)$. The normalizer in $E_8(4)$ of this group is a maximal subgroup of $E_8(4)$ and is isomorphic to the extension $PSL_4(5).2$ of the simple group by a graph automorphism which centralizes a subgroup isomorphic to $PSp_4(5)$.

It is easy to see that $PSL_4(5)$ cannot be contained in $E_8(2)$ (by comparing the 5-part of their orders, for example). However, the restriction of the adjoint module of $E_8(4)$ to $PSL_4(5)$ is an irreducible module which, by [7], can be realized over GF(2).

We shall obtain our subgroups in Theorem 1 as embedded in the centralizers of carefully chosen field automorphisms of $E_8(4)$ which normalize $PSL_4(5)$. We use properties of amalgams of subgroups, as well as detailed information on the 5-structure of $E_8(2)$, to show that these groups are unique up to conjugacy.

We first collect the information on $E_8(2)$ we shall need.

PROPOSITION 3: Assume that $G = E_8(2)$, $S \in Syl_5(G)$ and Z = Z(S).

- (i) |Z| = 5, $|S| = 5^5$ and $X = N_G(Z) \cong SU_5(4).4 = 5 \cdot U_5(4).4$.
- (ii) There exists a subgroup Y of G with $Y \cong PGU_5(4).4 = U_5(4).5.4$.
- (iii) X contains the monomial group 5^{1+3} : Sym(5) and Y contains the monomial group 5^{3+1} : Sym(5).
- (iv) S has exponent 5.
- (v) S contains a unique abelian normal subgroup Q_i of order 5^i for $1 \le i \le 4$.
- (vi) $N_G(Q_4)$ is isomorphic to a subgroup $5^4 \cdot (2^{1+4}_+ \circ 4) \cdot \text{Sym}(6)$.
- (vii) For i = 2, 3, $C_G(Q_i) = Q_4$ and $N_G(Q_i) \le N_G(Q_4)$.
- (viii) $N_G(Q_3)/Q_4 \cong 4 \times \text{Sym}(5)$.
 - (ix) S contains exactly five conjugacy classes of extraspecial subgroups of order 125 and every such subgroup contains Q_2 .
 - (x) If E is an extraspecial subgroup of G of order 125, then $N_G(E)' \cong 5^{1+2}_+: \mathrm{SL}_2(5)$.

(xi) $N_G(Q_2)/Q_4 \cong GL_2(5)$ and $N_G(Q_2)$ contains a unique conjugacy class of subgroups isomorphic to $5^2 : GL_2(5)$. If A_1 and A_2 are such subgroups with $|A_1 \cap A_2|$ divisible by $5^3.4^2$, then $A_1 = A_2$.

Proof: Parts (i) and (ii) are well-known and can be read from [4]. Part (iii) follows directly from the subgroup structure of $SU_5(4)$ and $PGU_5(4)$. From (iii), we see that S is a semidirect product of a normal elementary abelian subgroup of order 5^4 and a cyclic group of order 5. Thus S is isomorphic to a subgroup of a Sylow 5-subgroup of $SL_5(5)$ and consequently has exponent 5. Therefore, (iv) holds.

Assume without loss of generality that S is contained in the monomial group $X_1=5^{1+3}: \mathrm{Sym}(5)$. Put $Q_4=O_5(X_1)$. Then Q_4 is abelian and normal in S. Furthermore, as |Z|=5, Q_4 is the unique abelian subgroup of S of order S_4 . Since, as a GF(5)-module for $\mathrm{Sym}(5)$, Q_4 is isomorphic to a submodule of the 5-dimensional permutation module over GF(5), we see that Q_4 is uniserial as an S-module. Thus $Q_3=[Q_4,S]$ has order S_4 0 has order S_4 1 has order S_4 2 has order S_4 3 has order S_4 4 has order S_4 5 has order S_4 6 has order S_4 7 has order S_4 8 has order S_4 9 has order S_4 9

To prove part (vii) it suffices to show that $C_G(Q_2) = Q_4$ and this is what we shall do. Since $Z \leq Q_2$, $C_G(Q_2) = C_{C_G(Z)}(Q_2)$. Now, by (i), $C_G(Z) = X' \cong SU_5(4)$ and Q_2 can be identified therein with the subgroup of diagonal matrices $\langle \operatorname{diag}(\omega,\omega,\omega,\omega,\omega), \operatorname{diag}(1,\omega,\omega^2,\omega^3,\omega^4) \rangle$ where ω is an element of order 5 from GF(16). It follows that

$$\begin{split} C_{C_G(Z)}(Q_2) &= \langle \, \mathrm{diag}(\omega, \omega^{-1}, 1, 1, 1), \mathrm{diag}(1, \omega, \omega^{-1}, 1, 1), \\ & \mathrm{diag}(1, 1, \omega, \omega^{-1}, 1), \mathrm{diag}(1, 1, 1, \omega, \omega^{-1}) \rangle. \end{split}$$

Since this group has order 5^4 , we have $C_G(Q_2) = Q_4$ as claimed.

Consider now (viii). By considering the monomial subgroup $Y_1 \cong 5^{3+1}$: Sym(5), we see that N_3/Q_4 contains $Y_1/Q_4 \cong \text{Sym}(5)$. Furthermore, $Z(N_4/Q_4)$ induces a group of scalars of order 4 on Q_4 and so its preimage K normalizes Q_3 (and Q_2). Thus we have $N_3/Q_4 \geq KY_1/Q_4 \cong 4 \times \text{Sym}(5)$.

If $N_3 > KY_1$, then because N_3 operates irreducibly on $O_2(N_4)/K_1$ and because $\operatorname{Sym}(5)$ is a maximal subgroup of $\operatorname{Sym}(6)$, either N_3 contains a factor isomorphic to $\operatorname{Sym}(6)$ or $N_3/Q_4 \geq O_2(N_4/Q_4)$. If $N_3/Q_4 \geq O_2(N_4/Q_4)$, then N_3 acts irreducibly on Q_4 , whereas in fact it normalizes Q_3 , a contradiction. Therefore, $N_3/K \cong \operatorname{Sym}(6)$, and again N_3 acts irreducibly on Q_4 , a contradiction. Thus $N_3 = KY_1$ as claimed. This proves (viii).

Suppose that E is an extraspecial subgroup of S of order 5^3 . Then $S = EQ_4$ and $E \cap Q_4$ is normalized by both Q_4 and E. Hence $E \cap Q_4 = Q_2$ and Z = Z(E). Let $x \in S \setminus Q_4$. Then $\langle x, Q_2 \rangle$ is a non-abelian subgroup of S of order 125. Hence E is extraspecial of exponent 5. Since there are $5^5 - 5^4$ choices for x and since each extraspecial subgroup contains $5^3 - 5^2$ such elements, there are exactly 25 extraspecial subgroups E of S of order 125. Let E be such an extraspecial subgroup. If $E \triangleleft S$, then $[E,S] \leq [S,S] \cap E \leq Q_4 \cap E = Q_2$. But this means $Q_3 = [Q_4,S] \leq Q_2$, a contradiction. Therefore, $[S:N_S(E)] = 5$ and so we conclude that (ix) holds.

From [9, Table 3.5 B] the group $SU_5(4)$ contains five conjugacy classes of maximal subgroups isomorphic to 5^{1+2}_+ : $SL_2(5)$. So (x) follows from (ix).

Set $N_2 = N_G(Q_2)$. Let $L \cong 5^2 : \mathrm{SL}_2(5)$ be a subgroup of Y and let $E \in$ $\mathrm{Syl}_5(L)$. Then E is extraspecial of order 5³. Hence $N_G(E)'/E \cong \mathrm{SL}_2(5)$ by (x). Thus using (ix), by conjugating by an element from Y and then from $N_G(E)$ we may suppose that $O_5(L) = Q_2$. In particular, $N_2/Q_4 \ge LQ_4/Q_4 \cong SL_2(5)$. As in the proof of (vii) we see that $N_2 \geq KL$ and then that $N_3/Q_4 \cong 4 \circ \mathrm{SL}_2(5)$ or $GL_2(5)$. Since $C_{Q_4}(S) = Z$, we infer that, as an LQ_4/Q_4 -module, Q_4 is a non-split extension of two natural $SL_2(5)$ -modules. Thus Q_2 is the unique subgroup of Q_4 of order 5^2 normalized by L and so $N_{N_4}(LQ_4) \leq N_G(Q_2)$. We conclude that $N_G(Q_2)/Q_4 \cong GL_2(5)$ and the first part of (xi) is proven. Since the complements to Q_4/Q_2 in N_2/Q_2 are centralizers of involutions, the subgroups 5^2 . $GL_2(5)$ are determined uniquely up to conjugacy in G. Suppose that A_1 and A_2 are such complements and assume that $y \in N_G(Q_2)$ is such that $A_1^y = A_2$. Let B be the normalizer of a Sylow 5-subgroup in A_1 . So $|B| = 5^3 \cdot 4^2$ is uniquely determined by its order in A_1 . Assume that $B \leq A_2$. We are required to show that $A_1 = A_2$. Since $B \leq A_2 = A_1^y$, $B^{y^{-1}} \leq A_1$. Hence there exists $a \in A_1$ such that $B^{y^{-1}a} = B$. But $N_{N_G(Q_2)}(B) \leq N_{N_G(Q_2)}(A_1) = A_1$ and so $y^{-1} \in A_1$ and (xi) is proved.

LEMMA 4: Suppose that $G = E_8(4)$ and $S \in \operatorname{Syl}_5(G)$. Let $Z_2 = Z_2(S)$ be the second centre of S and $K = C_G(Z_2)$. Then $K \leq S$ and K is a torus of G of order S^8 .

Proof: Let Z = Z(S) and $C = C_G(Z)$. Then $K \leq C_G(Z)$. From [5, Table 4.7.3 B] we see that $C = (SU_5(4) \circ SU_5(4)).5 = 5 \cdot (U_5(4) \times U_5(4)).5$. Let $M \leq C$ be the product of the monomial subgroups from the two components C_1 and C_2 of C. So $M = 5^{1+(3+3)}.(Sym(5) \times Sym(5)).5$ and we assume, as we may, that $S \leq M$. Let K^* be the unique elementary abelian subgroup of S of order S^8 .

Then K^* is a maximal torus of G and $K^* = O_5(M)$. Assume that $Z_2 \not\leq K^*$. Then, as $[K^*, Z_2] \leq Z$, $Z_2Z/Z \leq C_{C/Z}(K^*/Z) = K^*/Z$. Thus $Z_2 \leq K^*$. It follows that $C_C(Z_2) = K^*C_{C_1}(Z_2)C_{C_2}(Z_2)$. We calculate $C_{C_1}(Z_2)$ and $C_{C_1}(Z_2)$ exactly as in the proof of Proposition 3 (v). This proves $K^* = K = C_G(Z_2)$.

Definition 1: Suppose that $R \cong \mathrm{PSL}_4(5)$ and let R_1 , R_2 be the maximal parabolic subgroups of R containing a fixed Borel subgroup B of R corresponding to point and plane stabilizers in R. So $R_1 \cong 5^3 : \mathrm{PSL}_3(5) \cong R_2$. Then a pair of subgroups (P_1, P_2) of a group G is an amalgam of type $\mathrm{PSL}_4(5)$ provided, for $i = 1, 2, P_i$ has the same chief factors as R_i and $P_1 \cap P_2$ has the same chief factors as $R_1 \cap R_2$.

Notice that an amalgam of type $PSL_4(5)$ contained in a group X does not necessarily determine a subgroup of X isomorphic to $PSL_4(5)$ and in fact this is not usually the case in the following lemma.

PROPOSITION 5: Suppose that $G = E_8(p^a)$ with a even and p a prime which is not 5; then G contains at most one conjugacy class of amalgams of type $PSL_4(5)$.

Proof: Suppose that (P_1, P_2) is an amalgam of type $PSL_4(5)$ in $E_8(p^a)$. For i=1,2, set $Q_i=O_5(P_i)$. Then $P_1\cong 5^3: PSL_3(5)$ and, as $PSL_3(5)$ is not isomorphic to a subgroup of the Weyl group of type E_8 , P_1 is the normalizer of a non-toroidal elementary abelian subgroup of order 5^3 . Using [3], we see that P_1 is uniquely determined up to conjugacy in G. Let $S\in Syl_5(P_1)$ and $P_{12}=N_{P_1}(Z(S))$. Then P_{12} is uniquely determined up to conjugacy in P_1 and $P_{12}\cong 5^{1+(2+2)}_+$. GL₂(5). Let $Q_{12}=O_5(P_{12})$. Then Q_{12} is extraspecial and $Q_{12}/Z(Q_{12})$ admits P_{12}/Q_{12} with two non-central chief factors. Let Z be the preimage of $Z(P_{12}/Q_{12})$. Then Z acts on $Q_1/Z(S)$ as the scalar λ and on Q_{12}/Q_1 it induces λ^3 . Thus the two non-central chief factors for P_{12} on Q_{12} are non-isomorphic and consequently P_{12} normalizes precisely two subgroups of Q_{12} of order S^3 . Since Q_1 and Q_2 are such subgroups, we see Q_2 is uniquely determined up to conjugacy by P_1 . Now P_2 normalizes Q_2 and consequently Q_2 is non-toroidal and so $P_2 = N_G(Q_2)$ is uniquely determined by P_1 and furthermore $P_1 \cap P_2 = P_{12}$. This proves the proposition. ■

In the proof of Theorem 5.1 in [3], it is shown that an amalgam (P_1, P_2) of type $PSL_4(5)$ exists in $E_8(p^a)$ whenever $E_8(p^a)$ contains a subgroup 5^3 . $PSL_3(5)$. It is further shown in [3] that the amalgam (P_1, P_2) generates a subgroup of

 $\mathrm{E}_8(p^a)$ isomorphic to $\mathrm{PSL}_4(5)$ if and only if p=2 and a is even. Notice that (P_2,P_1) is also an amalgam of type $\mathrm{PSL}_4(5)$ and so by Proposition 5 there exists $g\in\mathrm{E}_8(p^a)$ such that $P_2^g=P_1$ and $P_1^g=P_2$. Therefore, upon setting $G=\mathrm{E}_8(4)$ and $H=\langle P_1,P_2\rangle$, we see that $g\in N_G(H)$ and, since $P_1=N_G(O_5(P_1))$, we have $N_G(H)=\langle H,g\rangle$. Thus, if p=2 and a is even, $N_G(H)$ contains a subgroup $H\langle g\rangle\cong\mathrm{PSL}_4(5).2$ where g conjugates P_1 to P_2 . In particular, g does not induce a diagonal automorphism on H. Let τ be the inverse transpose automorphism of $\mathrm{PSL}_4(5)$. Then the outer automorphism group of $\mathrm{PSL}_4(5)$ is covered by $\langle \mathrm{diag}(i,1,1,1),\tau\rangle\cong\mathrm{Dih}(8)$. Hence up to conjugacy by elements of $\mathrm{Out}(\mathrm{PSL}_4(5))$ we have $g\in\tau\mathrm{PSL}_4(5)$ or $g\in\tau\mathrm{diag}(i,1,1,1)\,\mathrm{PSL}_4(5)$. In the first case we have there is an involution t in $\tau\mathrm{PSL}_4(5)$ such that t centralizes a subgroup of $\mathrm{PSL}_4(5)$ isomorphic to $\mathrm{PSp}_4(5)$. There are no such involutions in $\tau\mathrm{diag}(i,1,1,1)\,\mathrm{PSL}_4(5)$ (see [5,4.5.1]).

LEMMA 6: Suppose that $G = E_8(4)$, $H \leq G$ with $H \cong PSL_4(5).2$. Then there is an involution t of H such that $C_H(t)' \cong PSp_4(5)$.

Proof: Let $S \in \operatorname{Syl}_5(H)$ and Q be the unique elementary abelian subgroup of S of order 5^4 . As we have already witnessed the non-trivial outer automorphism in H/H' is not diagonal. Using [5, Table 4.5.1], if s is an involution in H and $|C_H(s)|_5 \geq 5^3$, then $C_H(s)' \cong \operatorname{PSp}_4(5)$. So to prove the lemma it suffices to show that there is such an involution. We do this in two steps. First suppose that there is an involution $t \in N_H(S)$ such that |[S/Q,t]| = 5. Let $N = N_H(Q) \cong 5^4.(\operatorname{SL}_2(5) \circ \operatorname{SL}_2(5)).2^2$ with $N_H(S) \leq N$ and let $z \in N$ be such that $C_N(z)$ is a complement to Q. Let T be a Sylow 2-subgroup of $N_H(S) \cap N$ containing t. Notice that $|T| = 2^5$. Since $[S,t] \not\leq Q$, we see that $|C_Q(t)| = 5,5^2$ or 5^3 . If either of the latter two cases holds, then, as $|C_{S/Q}(t)| = 5, |C_S(t)| \geq 5^3$ and we are done. If $|C_Q(t)| = 5$, then we replace t by t' = tz. Then t' is an involution and $|C_Q(t')| = 5^3$ and we are done once again.

We now show that there is an involution $t \in N_H(S)$ with |[S/Q, t]| = 5. For this we use the fact that Q is contained in a torus K of order 5^8 in $E_8(4)$. Then (for some choice of K) $KS \in \operatorname{Syl}_5(G)$ and consequently $Z_2(S) = Z_2(KS)$. By Lemma 4, $C_G(Z_2(S)) = K$ and so $C_G(Q) = K$ also. Therefore, $K \leq N_G(Q)$ and so $ST \leq N_G(K)$. Since $N_G(K)/K \cong W(E_8)$ we may calculate in $W = W(E_8)$. Let $R \in \operatorname{Syl}_5(W)$. Then $N_W(R)$ can be seen in the subgroup (Sym(5) × Sym(5)).2° coming from the diagram $A_4 \times A_4$ (see [4]). Thus a Sylow 2-subgroup of $N_W(R)$ has order 2^6 . Now we can identify $N_H(S)K/K$ with a subgroup of $N_W(R)$. Since TK/K has order 2^5 , we see that $TK/K \cap N_W(R)$ contains

the involutions from the subgroup $\mathrm{Alt}(5) \times \mathrm{Alt}(5)$ which we assume contains R. Finally, in this subgroup we see $\mathrm{Dih}(10) \times 5$ and we can choose t in this subgroup satisfying [S,t] < S and $[S,t] \not \leq Q$. This concludes the proof of the lemma.

Combining Proposition 5 and Lemma 6 with discussion before Lemma 6, we have the following result which is a substantial part of Theorem 2.

COROLLARY 7: There is a unique conjugacy class of subgroups $PSL_4(5)$ in $E_8(4)$. The normalizer in $E_8(4)$ of this group is isomorphic to the extension $PSL_4(5).2$ of the simple group by a graph automorphism which centralizes a subgroup isomorphic to $PSp_4(5)$.

Definition 2: Suppose that $R \cong \mathrm{PSp}_4(5)$ and let R_1 and R_2 be the two maximal parabolic subgroups containing a fixed Borel subgroup B of R. Then a pair of subgroups (P_1, P_2) of a group G is an amalgam of type $\mathrm{PSp}_4(5)$ provided, for $i = 1, 2, P_i$ has the same chief factors as R_i and, for $T \in \mathrm{Syl}_5(P_1 \cap P_2)$, $P_1 \cap P_2 = N_{P_1}(T) = N_{P_2}(T)$.

We may assume that $R_1 \cong 5_+^{1+2}.(\mathrm{SL}_2(5) \circ 4)$ and that $R_2 \cong 5^3: \Omega_3(5).4 \cong 5^3: \mathrm{Alt}(5).4$. We also note that $B/O_5(B) \cong 4 \times 2$.

PROPOSITION 8: There is at most one conjugacy class of amalgams of type $PSp_4(5)$ in $E_8(2)$.

Proof: Let $G = E_8(2)$, $S \in \operatorname{Syl}_5(G)$ and use the notation from Proposition 3. Suppose that (P_1, P_2) is an amalgam of type $\operatorname{PSp}_4(5)$ contained in G. Let $T \in \operatorname{Syl}_5(P_1 \cap P_2)$ and assume without loss of generality that $T \leq S$. Then $T_3 = O_5(P_2) \leq T$ is elementary abelian of order 5^3 . Notice that T_3 is a characteristic subgroup of T. Therefore, as |S:T|=5, T_3 is normal in S and Proposition 3 (v) implies $T_3 = Q_3$. Thus Proposition 3 (vii) implies $P_2 \leq N_Y(Q_3)$. Notice that $N_Y(Q_3)/Q_3$ is a subgroup $(5 \times \operatorname{Alt}(5)).(2 \times 4)$. Therefore, $P_2'' = N_Y(Q_3)'' \cong 5^3$. Alt(5) is uniquely determined up to conjugacy in G. Let $T_1 \geq Q_4$ be such that $T_1 \triangleleft N_Y(Q_3)$ and $|T_1/Q_4| = 2$. Then, as T_1 inverts Q_4 , T_1Q_3 is determined uniquely up to conjugacy in Q_4T_1 . Define $P_2^* = N_Y(Q_3)''T_1$. Then $P_2^*/Q_3 \cong 2 \times \operatorname{Alt}(5)$. We have

(8.1) P_2^* is uniquely determined up to conjugacy in G. In particular, we may suppose that $P_2^* \leq P_2$.

Let K be a complement to T in $N_{P_2^*}(T)$. So $K \cong 2 \times 2$ and on $T/\Phi(T)$, K induces the matrix group $\langle \operatorname{diag}(-1,1), \operatorname{diag}(1,-1) \rangle$. Consequently K normalizes exactly two subgroups of T of order 5^3 which contain $\Phi(T)$. Let

 $E_1=O_5(P_1)$. Since K normalizes both Q_3 and E_1 and $E_1\geq \Phi(T)$, we see that E_1 is uniquely determined by P_2 . Furthermore, E_1 is extraspecial and so, setting $P_1^*=N_G(E_1)',\ P_1^*\cong 5^{1+2}: \mathrm{SL}_2(5)$ by Proposition 3 (x). It follows that $P_1^*\leq P_1$. Let $K_1=N_{P_1^*}(T)$. Then K_1/T is cyclic of order 4 and, as P_2^* determines P_1^* , it also determines K_1 . Now $K_1\leq P_1\cap P_2$ and so we infer that $P_2=K_1P_2^*$ is uniquely determined. Finally, setting $K_2=N_{P_2}(T)$, we have $P_1=P_1^*K_2$ and the amalgam (P_1,P_2) is determined uniquely up to conjugacy in G.

Definition 3: Suppose that $R \cong \mathrm{PSL}_3(5)$ and let R_1 and R_2 be the two maximal parabolic subgroups containing a fixed Borel subgroup B of R. Then a pair of subgroups (P_1, P_2) of a group G is an amalgam of type $\mathrm{PSL}_3(5)$ provided, for $i=1,2,\ P_i$ has the same chief factors as R_i and, for $S\in\mathrm{Syl}_5(P_1\cap P_2)$, $P_1\cap P_2=N_{P_1}(S)=N_{P_2}(S)$.

We remind the reader that $R_1 \cong R_2 \cong 5^2 : GL_2(5)$.

PROPOSITION 9: There is at most one conjugacy class of amalgams of type $PSL_3(5)$ in $E_8(2)$.

Proof: Suppose that (P_1, P_2) is an amalgam of type $\mathrm{PSL}_3(5)$ in $G = \mathrm{E}_8(2)$. Use the notation from Proposition 3. Let $E \in \mathrm{Syl}_5(P_1 \cap P_2)$. Then E is extraspecial of order 125. Of course we may suppose that $E \leq S$ and so $Q_2 \leq E$ by Proposition 3 (ix). By Proposition 3 (xi), P_1 is determined uniquely up to conjugacy in G and of course $N_{P_1}(E)$ is determined up to conjugacy in P_1 . Now $N_{P_1}(E) \cong 5^{1+2}: (4\times 4)$ with Sylow 2-subgroup $T \cong 4\times 4$ acting on $E/\Phi(E)$ as a diagonal group of automorphisms. Thus T normalizes precisely two elementary abelian subgroups of E of order 25. These groups must be $O_5(P_1)$ and $O_5(P_2)$. Let $t \in N_{N_G(E)}(TE)$ with $O_5(P_1)^t = O_5(P_2)$ and set $P_2^* = P_1^t$. Then (P_1, P_2^*) is an amalgam of type $\mathrm{PSL}_3(5)$. To complete the lemma we only have to show that $P_2^* = P_2$. This however follows from Proposition 3 (xi) as $P_2 \cap P_2^* \geq N_{P_1}(E)$.

PROPOSITION 10: There are subgroups of $E_8(2)$ isomorphic to $Aut(PSL_3(5))$ and $Aut(PSp_4(5))$.

Proof: Let $G = E_8(4)$ and consider the subgroup $K \cong PSL_4(5)$. Then $H = N_G(K)$ is isomorphic to $PSL_4(5).2$ where the outer automorphism is the graph automorphism σ which centralizes a subgroup of K isomorphic to $PSp_4(5)$. Then, by Proposition 5, H is determined uniquely up to conjugacy in G. Let τ be

the Frobenius automorphism of G with fixed subgroup $E_8(2)$ and consider $G_1 =$ $G(\tau)$. Then, by the Frattini Argument, $G_1 = N_{G_1}(H)G$. So $[N_{G_1}(H): H] = 2$. Set $H_1 = N_{G_1}(H)$. Since σ is not a diagonal automorphism of $PSL_4(5)$, we infer that H_1/K is elementary abelian of order four. Furthermore, from the structure of $Out(PSL_4(5)) \cong Dih(8)$ we infer that H_1/K has two elements corresponding to graph automorphisms (which are conjugate in $Out(PSL_4(5))$) and a diagonal automorphism. Let t_1K and t_2K be the two cosets of K in H_1 which are not contained in G. And assume that t_1 is the coset of the graph automorphism. Each of the cosets t_1H' and t_2H' intersects exactly two conjugacy classes of involutions of H_1 (see [5, Table 4.5.1]). Let the representatives of these classes be t_1 and t_1' , t_2 and t_2' respectively. Now using [5, Table 4.5.1], up to change of notation, we have $C_H(t_1) \cong \operatorname{Aut}(\operatorname{PSp}_4(5)), O^{5'}(C_H(t_1')) \cong \operatorname{PSL}_2(5) \times \operatorname{PSL}_2(5),$ $C_H(t_2) \cong \operatorname{Aut}(\operatorname{PSL}_3(5))$ and $O^{5'}(C_H(t_2')) \cong \operatorname{PSL}_2(25)$. On the other hand, by Lang's Theorem t_1 , t_1' , t_2 and t_2' are all G-conjugate to τ (see [1, 19.1]). It follows that all the aforementioned centralizers are contained in subgroups of G isomorphic to $E_8(2)$. In particular, the statement in the proposition holds.

There is a second existence proof of the subgroup $\operatorname{PSL}_3(5)$ in $\operatorname{E}_8(2)$ which has the advantage that it also shows that $\operatorname{PSL}_3(5)$ is a subgroup of $\operatorname{E}_8(p)$ for all primes $p \neq 5$ (for p = 5 the existence is clear). We explain the proof in characteristic 2 and continue the notation of Proposition 10. So we have $G_1 = G\langle \tau \rangle$. By [3] there is a unique conjugacy class of subgroups $P = 5^3 : \operatorname{PSL}_3(5)$ in G and so $[N_{G_1}(P):P] = 2$. Since $\operatorname{GL}_3(5) \cong 4 \times \operatorname{PSL}_3(5)$ and $Z(N_G(P)) = 1$, we infer that there is an involution t in $N_{G_1}(P)$ with $C_P(t) \cong \operatorname{PSL}_3(5)$. But then Lang 's Theorem implies that $\operatorname{PSL}_3(5)$ is isomorphic to a subgroup of $\operatorname{E}_8(2)$.

Proof of Theorem 1: The existence of subgroups of $E_8(2)$ which are isomorphic to $PGSp_4(5)$ and $Aut(PSL_3(5))$ and their uniqueness up to conjugacy is established by combining Propositions 8, 9 and 10. Finally we observe that these subgroups are maximal in $E_8(2)$. Write L for either of the two simple subgroups, and let M be an overgroup of L maximal in G. Let N be a minimal normal subgroup of M. Assume first that N is a product of non-abelian simple groups, each isomorphic to the simple group S. If S is of Lie type in characteristic 2, then it has Lie rank at most 8. Since L has no representation over the field of two elements of dimension less than 24 [8] (note that the 12-dimensional representation requires the field of order 4), this is impossible by [12]. Also, the only possibility for S not of Lie type in characteristic 2 is $PSL_4(5)$ by [12], and that is only a subgroup of $E_8(2^a)$ if a is even. Thus N = L follows in this case,

proving the desired maximality. Hence we can now assume that N is elementary abelian and L is involved in M/N. This is clearly impossible: as above, L is not in a centralizer in $E_8(2)$, since these involve only subsystem subgroups. Hence N would have to be a 5-subgroup, and this is clearly impossible.

Proof of Theorem 2: Let $G = E_8(4)$. The existence of a subgroup K of G isomorphic to $\operatorname{PSL}_4(5)$ and the structure of $N = N_G(K)$ is given in Corollary 7. So to complete the proof of Theorem 2 we have to show that N is a maximal subgroup of G. Assume that L < G contains K. By [12] K is not contained in a parabolic subgroup or a subsystem subgroup of G. In particular, $C_G(K) = 1$. Let M be a minimal normal subgroup of G. Assume that G is elementary abelian. Since G is not contained in a parabolic of G, we see that G is not a 2-group. Now the minimal G-modular representation of G has dimension 5 for G for G and, by G is a direct product of non-abelian simple groups. Since the minimal faithful permutation degree of G is 156, we infer that G and G is simple. We now deduce that G by applying [12]. Thus G and G are done.

Remarks:

- (i) There are at least two conjugacy classes of PSp₄(5) in E₈(4), one obtained via PSL₄(5) and the other via the parabolic subgroup D₇ (cf. [12]). It is however possible that the class of primitive subgroups (i.e., not contained in a parabolic subgroup) in E₈(4) is unique.
- (ii) It is shown in [12, 8.5] that $PSp_4(5)$ cannot be a subgroup of $E_8(q)$ if q is not a power of 2 or 5. On the other hand, our alternative proof of the embedding of $PSL_3(5)$ into $E_8(p)$ for any p other than 5. The following character calculation shows that $Aut(PSL_3(5))$ is not a subgroup of $E_8(p)$ whenever $p \neq 2$ or 5. Let V be the adjoint module for $E_8(p)$ with $p \neq 2$ or 5. From [12, Table 4] the character of any element of order 2 on V is either 24 or -8. Thus the character tables in [4] and [8] show that the restriction of V to a subgroup $PSL_3(5)$ has exactly two composition factors each of dimension 124. Furthermore, if $H = Aut(PSL_3(5)) \leq E_8(p)$, then the outer automorphism of H exchanges the two composition factors for H' and so has character 0 on V. Hence it is impossible for H to be a subgroup of $E_8(p)$.
- (iii) Matrices generating $E_8(2)$ in its adjoint representation are available

 $C_G(t_2')$

- from the ATLAS website [14]. Using this representation we have constructed $PSL_3(5)$ and $PSp_4(5)$ as subgroups of $E_8(2)$. See http://web.mat.bham.ac.uk/C.W.Parker/L35 (PSp45) for matrices generating these subgroups. We have decomposed the adjoint module for $E_8(2)$ for each of $PSL_3(5)$ and $PSp_4(5)$. The first restricts as a uniserial module $\frac{124}{124}$ and the second restricts as $40 \oplus \frac{104}{104}$.
- (iv) There are exactly two representations for PSL₄(5) of dimension 248 defined over a field of characteristic 2 [6, 7]. These representations are both contained as composition factors in the GF(2) permutation module on the stabiliser of a line in the natural 4-dimensional representation of SL₄(5). By restricting to a subgroup PSL₃(5), we can identify which of these two representations is isomorphic to the restriction of the adjoint E₈(4)-module and then we may calculate the restriction to all the subgroups of E₈(2) discovered in Proposition 10. We list these restrictions in Table 1.

24/2/1/24/2/24/12/1/12/2/24/26/1/12/2/24/26/2/2/1/24

Table 1

ACKNOWLEDGEMENTS: This paper was written while the authors were visiting CalTech in the autumn of 2003. It is a pleasure to thank the department and in particular Michael Aschbacher for their hospitality. We also thank J.-P. Serre for helpful comments on an earlier version of this paper.

References

- [1] M. Aschbacher and G. M. Seitz, Involutions in Chevalley groups over fields of even order, Nagoya Mathematical Journal 63 (1976), 1-91.
- [2] R. W. Carter, Finite Groups of Lie Type. Conjugacy Classes and Complex Characters, Reprint of the 1985 original, Wiley Classics Library, A Wiley-Interscience Publication, John Wiley & Sons, Ltd., Chichester, 1993.
- [3] A. M. Cohen, M. W. Liebeck, J. Saxl and G. M. Seitz, *The local maximal sub-groups of exceptional groups of Lie type, finite and algebraic*, Proceedings of the London Mathematical Society (3) **64** (1992), 21–48.

- [4] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, Atlas of Finite Groups. Maximal Subgroups and Ordinary Characters for Simple Groups, With computational assistance from J. G. Thackray, Oxford University Press, Eynsham, 1985.
- [5] D. Gorenstein, R. Lyons and R. Solomon, The Classification of the Finite Simple Groups, Number 3, Part I, Chapter A, Almost simple K-groups, Mathematical Surveys and Monographs, 40.3, American Mathematical Society, Providence, RI, 1998.
- [6] G. Hiss and G. Malle, Low-dimensional representations of quasi-simple groups, London Mathematical Society Journal of Computational Mathematics 4 (2001), 22-63.
- [7] G. Hiss and G. Malle, Corrigenda: "Low-dimensional representations of quasisimple groups", London Mathematical Society Journal of Computational Mathematics 5 (2002), 95–126.
- [8] C. Jansen, K. Lux, R. Parker and R. Wilson, An Atlas of Brauer Characters, Appendix 2 by T. Breuer and S. Norton, London Mathematical Society Monographs, New Series, 11, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1995.
- [9] P. Kleidman and M. Liebeck, The Subgroup Structure of the Finite Classical Groups, London Mathematical Society Lecture Note Series, 129, Cambridge University Press, Cambridge, 1990.
- [10] M. W. Liebeck and J. Saxl, On the orders of maximal subgroups of the finite exceptional groups of Lie type, Proceedings of the London Mathematical Society (3) 55 (1987), 299-330.
- [11] M. W. Liebeck, J. Saxl and G. M. Seitz, Subgroups of maximal rank in finite exceptional groups of Lie type, Proceedings of the London Mathematical Society (3) 65 (1992), 297-325.
- [12] M. W. Liebeck and G. M. Seitz, On finite subgroups of exceptional algebraic groups, Journal für die reine und angewandte Mathematik 515 (1999), 25-72.
- [13] C. Parker and J. Saxl, Localization and finite simple groups, Israel Journal of Mathematics, this volume.
- [14] R. A. Wilson et al., ATLAS of Group Representations, http://web.mat.bham.ac.uk/atlas/v2.0/ (2004).